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1 Introduction
A major problem with the world-semantics of relevant logics concerns the
ternary relation employed in stating the truth conditions of conditionals.
What, exactly, does it mean, and why is it reasonable to employ it in this
fashion? In this note, I will give an account of the ternary relation which
answers these questions. The answer builds on thoughts that are familiar in
relevant logic, but never seem to have been spelled out explicitly in the way
that follows.1

The idea that a proposition is a function is a familiar one in modern
logic. For example, in intensional logics one can think of a proposition as a
function from worlds to truth values. The idea that the propositional content
of a conditional is a particular sort of function is also familiar. In intuitionist
logic, the semantic content of a conditional, α → β, is a construction that
applies to any proof of α to give a proof of β. This construction is obviously
a function. I want to suggest that the conditional in relevant logic is also
best thought of as a function. In a nutshell, it is a function which, when
applied to the proposition expressed by α gives the proposition at expressed
by β.

There is another contentious feature of the standard Routley/Meyer se-
mantics for relevant logics: the * function deployed in stating the truth con-
ditions for negation. I shall have nothing here to say concerning that. I will
therefore restrict myself to positive relevant logic. It will be useful (though

1For example, the thought that fusion is something like functional application is found
in the motiviating remarks of Slaney (1990). The definition of R given below is to be
found in Read (1988), though he takes fusion to be a sort of intensional conjunction. I’m
grateful to Stephen Read for helpful discussions on the subject.
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not essential) to suppose the language to contain the constant T , meaning
something like ‘Something is true’, true at all worlds, and so satisfying the
axiom α→ T .

2 The Semantics and its Meaning
A relational structure for the semantics of such a logic2 is a tuple 〈N,W,R, ν〉,
where W is a set of worlds, N ⊆ W are the normal worlds and R is a ternary
relation on W . ν is a function which assignes a truth value (1 or 0), νw(p)
to every parameter at each world, w.

If x, y ∈ W , define the relation x ≤ y by: ∃n ∈ N , Rnxy. A structure
must satisfy the following conditions:3

R1 x ≤ x

R2 If x ≤ y and Ryzw then Rxzw

R3 x ≤ y and νx(p) = 1 ⇒ νy(p) = 1

RS is called the heredity condition, and, employing R2 can be shown to
extend to all all formulas.

The truth conditions for the logical constants of the language are as fol-
lows.

νw(T ) = 1

νw(α ∧ β) = 1 iff νw(α) = 1 and νw(β) = 1

νw(α ∨ β) = 1 iff νw(α) = 1 or νw(β) = 1

νw(α→ β) = 1 iff ∀y, z ∈ W (if Rwyz and νy(α) = 1 then νz(β) = 1)

Validity is defined in terms of truth preservation at normal worlds.
Turning to the meaning of the components of the structure, we think of a

world as a set of propositions (the propositions true at that world), which is
closed under entailment, under conjunction, and is prime (that is, whenever
a disjunction is a member, so is at least one disjunct). It then follows that
for all w ∈ W :

2As given in Routley et al. (1982), section *.*.
3p is an arbitrary propositional parameter. Lower case greek letters are arbitrary

formulas.
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P∨ a ∨ b ∈ w iff a ∈ w or b ∈ w

P∧ a ∧ b ∈ w iff a ∈ w and b ∈ w

If a and b are propositions, define a[b] to be the object obtained by applying
the function a to the argument b. If a is not a function, or b is not in its
domain, let a[b] be the proposition expressed by T . If x, y ∈ W , let x[y] be:

{a[b]; a ∈ x, b ∈ y}

Note that x[y]may not be a world. For example, there is no reason to suppose
it to be prime. However, we can use it to define the relationsip R on worlds
as follows:

Rxyz is x[y] ⊆ z

In other words, Rxyz iff whenever the result of of applying any function
(proposition) in x to any proposition in y is all contained in z.4 Thinking
of conditionals in this way makes it absolutely clear why a ternary relation
is appropriate. One place for the function one for its argument; one for its
value.

To complete intended informal explanation of the semantics, we need to
say what N is. If a and b are propositions, let a→ b be the proposition that
a entails b. Let the members of N be exactly those worlds, n such that for
any proposition a→ b:

a→ b ∈ n iff a does entail b.

In other words, the normal worlds are exactly those words where → marks
the genuine entailments: the worlds where the logical laws are the correct
ones.

3 Justifying the Conditions
Given the explanations of the semantic notions just given, both the con-
straints on them and their deployment in stating truth conditions makes
perfectly good sense.

4The semantics given here are the non-simplified semantics. In the simplified semantics,
to give truth conditions for → uniformly in terms of R, we need the condition Rnyz iff
y = z, where n is a normal world. For this condition to hold on the present account, we
would need: n[y] ⊆ z iff y = z. This condition clearly fails since we can have distinct z1
and z2 for which n[y] ⊆ z1 and n[y] ⊆ z2.
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For R1: Suppose that c ∈ n[x]. Then for some a → b ∈ n, a ∈ x,
c = (a → b)[a] = b. But that means that a entails b, and x is closed under
entailment. So, b = c ∈ x. That is, n[x] ⊆ x, i.e., Rnxx.

For R3: Suppose that x ≤ y. Then for some n ∈ N , Rnxy, i.e., n[x] ⊆ y.
If a ∈ x then, since a → a ∈ n, a = (a → a)[a] ∈ n[x]. So a ∈ y. That is,
x ⊆ y. R3 follows as a special case.

For R2: Suppose that x ≤ y. Then x ⊆ y. It follows that x[z] ⊆ y[z]. For
if a ∈ x[z], then for some b ∈ z, b → a ∈ x. But then b → a ∈ y; a ∈ y[z].
Thus, if Ryzw, i.e., y[z] ⊆ w, it follows that x[z] ⊆ w, i.e., Rxzw.

For the truth conditions: Since T is a proposition that holds at all worlds,
the first it trivial. P∧ and P∨ obviously deliver the truth conditions for
conjunction and disjunction. For →: Suppose that a → b ∈ w, and Rwxy,
i.e., w[x] ⊆ y. Then if a ∈ x, (a → b)[a] = b ∈ y. Conversely, suppose that
a → b /∈ w. Then we can find worlds, x and y, such that a ∈ x, b /∈ y, and
w[x] ⊆ y. The construction of the canonical model shows how to do this.5
Starting with {a} and the empty set, we extend each of these to worlds, x
and y, with the relevant properties. In particular, we can keep b out of the
second, since a→ b /∈ w.

Note that the same sort of argument as the one for → applies to an
understanding of the truth conditions of modal operators in terms of worlds
and the binary relative-possibility relation. The truth conditions tell us that:

�a ∈ w iff for all w′ such that wRw′, a ∈ w′

If we take wRw′ to mean that for all �a ∈ w′, a ∈ w, the truth of the left to
right direction is clear. For the right to left, suppose that �a /∈ w; we need
to know that there is a possible world, w′, such that wRw′, and a /∈ w′. This
is exactly what the consturction in the canonical model delivers for us.

4 Extensions
Extensions of the logic B are obtained semantically by adding further con-
straints on R. Thus, to get the relevant logic R, we add:

If ∃w(Rxyw and Rwuv) then ∃w(Rxuw and Rywv)

If Rxyz then Ryxz
5See, e.g., ****.
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If Rxyz then ∃w(Rxyw and Rwyz)

The functional interpretation of the arrow makes these conditions rather
implausible. Consider the second, for example. It says that for any x, y,
and z, if x[y] ⊆ z then y[x] ⊆ z; so if x[y] ⊆ y[x]. But generally speaking,
there is no connection between a[b] and b[a]. Functional application is hardly
commutative. Similarly, the third tells us that for all x, y, and z, if x[y] ⊆ z
then, for some w, x[y] ⊆ w and w[y] ⊆ z. So for some w such that x[y] ⊆ w
and w[y] ⊆ x[y] But if a[b] = c, there is no reason to suppose that c[b] = a[b].

5 Conclusion
To summarise, what we have seen are the following:

1. It is perfectly natural to understand the meaning of a conditional as a
function.

2. If one does this, then an intelligible meaning for the semantic ternary
relation is straightforward. The reason one needs a ternary relation is
clear: one place for the function; one place for the argument; one place
for the value.

3. Understanding the meaning of the conditional in this way motivates
the relevant logic B.

4. Further constraints on R would appear to be unmotivated. Hence,
extensions of B do not appear to be justified by this understanding of
the conditional.
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